If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2k^2-4k=15
We move all terms to the left:
2k^2-4k-(15)=0
a = 2; b = -4; c = -15;
Δ = b2-4ac
Δ = -42-4·2·(-15)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*2}=\frac{4-2\sqrt{34}}{4} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*2}=\frac{4+2\sqrt{34}}{4} $
| k^2-4k=15 | | 5x+17=5x+4 | | (-4)^2=-12y | | j-0.4=1 | | (1-4x)^3/2=125 | | j-2/5=7 | | L(x)=2x-4W(x)=x+3 | | 20h=10 | | C(x)=0.08x+55R(x) | | 2(15-y)+4y=26 | | 2(15-y)+4y=30 | | 5x=15,12x | | 2(2+3)+4x=2(2x+2)+ | | x=24*4 | | 25^x=6250 | | X^2-21x-132=0 | | 1000000+0.35x-500000=x | | x^2-5x/x-2=15-11x | | 500000=x+0.35x | | 4^x-1=512 | | (5/m)+(5/(m-10))=3 | | Y²+y-56=0 | | X^2-21x=132 | | 5u-6u+25=7 | | 1=13-2/7y | | 18/5x=3 | | t^2+4t+16=0 | | (9+x)(6+x)=0 | | x+22=5x-2 | | 67+4h=73+2h | | (9x+2)=13x-18 | | 2x-4(×-5)=-3+4×-19 |